Exemple

Considérons l'application $T (\mathbb{R}^2) \to \mathbb{R}^3$ donnée par

$$T(\vec{x}) = \begin{pmatrix} 3x_1 - x_2 \\ 5x_1 + 2x_2 \\ x_1 + x_2 \end{pmatrix}$$

Nodrice associée à T:

A (3×2)

$$A = (T(\vec{e_1}) T(\vec{e_2})) = \begin{pmatrix} 3 & -1 \\ 5 & 2 \\ 1 & 1 \end{pmatrix}$$

$$T(\vec{e_1}) T(\vec{e_2})$$

Test-elle surjective! Par le ter. 11, Test surj si et seulement si A possède un pivot par ligne.

Comme A possècle au max. 2 pivots, Th'est pas suj.

T est-elle injective?

Tinjective () T(z)=0 u'a que la sol. triviale (tl. 12) (=) les colonnes de 12 sont lin. indépendente.

€1 il y a un proot par colonne.

=1 T est inj. non surj.

Noyau et image d'une application

Définition 24 (Noyau et image).

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire.

Le noyau de T est noté Ker (T) et c'est é ensemble

L'image de T est définie par

Exemples
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 donnée par $T(\vec{x}): (\frac{10}{10})(\frac{x_1}{x_2})$

$$T(\vec{x}): (\frac{10}{10})(\frac{x_1}{x_2})$$

$$= A$$

$$T(\frac{3}{2}) = (\frac{10}{10})(\frac{x_1}{x_2}) = (\frac{3}{3})$$

$$(\frac{10}{10})(\frac{x_1}{x_2}) = (\frac{0}{0})$$

$$(\frac{10}{10})(\frac{x_1}{x_2}) = (\frac{0}{0})$$

$$(\frac{10}{10})(\frac{x_1}{x_2}) = (\frac{0}{0})$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = \text{libre}$$

$$x_1 = 0$$

$$x_2 = \text{libre}$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_1 = 0$$

$$x$$

Chapitre 2 : Calcul Matriciel

But

On a vu que les systèmes d'équations linéaires sont étroitement liés à la notion de matrice, à travers la matrice des coefficients ainsi que la matrice augmentée associées. L'étude plus approfondie des matrices fournira des outils pour la résolution des systèmes :

- 1. Lorsque A est carrée et que l'application T_A associée est bijective, on utilisera la matrice associée à l'application inverse de T_A .
- 2. Lorsque la matrice est rectangulaire $(n \neq m)$, on travaillera avec des factorisations matricielles.
- 3. Pour des matrices de grande taille, on pourra les étudier par blocs.

2.1 Opérations matricielles

On note $M_{m \times n}(\mathbb{R})$ l'ensemble de toutes les matrices de taille $m \times n$ dont les coefficients sont des nombres réels. Considérons une matrice $A \in M_{m \times n}(\mathbb{R})$. On utilisera les notations suivantes :

A =
$$\begin{pmatrix} a_{44} & ... & a_{44} \\ \vdots & \vdots & \vdots \\ a_{M4} & ... & a_{Mn} \end{pmatrix}$$

$$a_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$a_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$A = \begin{pmatrix} a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{4j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = \begin{pmatrix} a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

$$b_{j} = colonne$$

$$b_{j} = b_{j}$$

$$b_{j} = b_{j}$$

$$b_{j} = colonne$$

$$b_{j} = b_{j}$$

$$b_{j} = b_{j$$

On notera encore $0_{m \times n} \in M_{m \times n}(\mathbb{R})$ la matrice dont tous les coefficients valent 0, dite matrice nulle, ainsi que $I_n \in M_{n \times n}(\mathbb{R})$ la matrice carrée qui a des 1 sur la diagonale et dont tous les autres coefficients sont nuls, dite matrice identit'e.

Addition de matrices

6. $(\lambda \mu)A = \lambda(\mu A)$

 $7.(1) \cdot A = A$

 $\delta \cdot 0 \cdot A = 0_{m \times n}$

Soient $A, B \in M_{m \times n}(\mathbb{R})$. On définit la somme A+B de la façon suivante :

$$A+B=\begin{pmatrix} a_{1}&\dots a_{2n}\\ \vdots &\vdots &\vdots \\ a_{mn}&\dots a_{mn} \end{pmatrix} + \begin{pmatrix} b_{1n}&\dots b_{2n}\\ \vdots &\vdots &\vdots \\ a_{mn}+b_{mn}&\dots a_{mn}+b_{mn} \end{pmatrix}$$

$$A=\{a_{ij}\} \text{ et } B=\{b_{ij}\}, \text{ alors } A+B=C \text{ avec}$$

$$Cij=a_{ij}+b_{ij} \text{ \forall 1 $i\in\mathbb{M}$}$$

$$A=\{a_{ij}\} \text{ et } \lambda\in\mathbb{R}, \text{ on definit } \lambda A \text{ par}$$

$$A=\{a_{mn}&\dots a_{mn}\} = \begin{pmatrix} a_{mn}&\dots a_{mn}\\ \vdots &\vdots \\ a_{mn}&\dots a_{mn} \end{pmatrix} = \begin{pmatrix} a_{mn}&\dots a_{mn}\\ \vdots &\vdots \\ a_{mn}&\dots a_{mn} \end{pmatrix}$$
So
$$A^{*}\{a_{ij}\}, \text{ alors } \lambda A=D=\{d_{ij}\} \text{ avec}$$

$$d_{ij}=\lambda a_{ij} \text{ \forall $i\neq$} \text{ \forall $i\neq$} \text{ \forall $i\neq$} \text{ \forall $i\neq$}$$
Théorème 13. Soient A,B et $C\in M_{m\times n}(\mathbb{R})$ et $\lambda,\mu\in\mathbb{R}$. Alors on a \mathbb{R}^{m-n}
1. $A+B=B+A$ commutativité
2. $(A+B)+C=A+(B+C)$ associativité
3. $A+0_{m\times n}=A$ Omen est e'élément neulse pour l'addition
4. $\lambda(A+B)=\lambda A+\lambda B$ diotrobutivité mixte
5. $(\lambda+\mu)A=\lambda A+\mu A$

associativité mixte

Ces propriétés découlent de la définition de l'addition des matrices, de la multiplication par un scalaire et des propriétés de \mathbb{R} .

1 CR

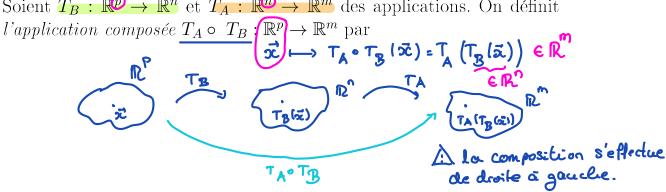
ex: a démontrer (...)

Multiplication de matrices

La définition de la multiplication de deux matrices A et B découle naturellement de la composition des applications linéaires T_A et T_B associées.

Définition

Soient $T_B: \mathbb{R}^p \to \mathbb{R}^n$ et $T_A: \mathbb{R}^n \to \mathbb{R}^m$ des applications. On définit



Remarque: Si T_A et T_B sont linéaires, alors l'application composée $T_A \circ T_B$ est aussi linéaire. déf. comp.

$$T_B$$
 est aussi linéaire. $dif.comp$.

 T_B est aussi linéaire. T_B (comp.

 T_B est aussi linéaire. T_B (comp.)

2° poutre en exercice

Conséquence : La matrice associée à l'application $T_A \circ T_B$ existe.

Exemple
$$T_{g}: \mathbb{R}^{2} \to \mathbb{R}^{3}$$
 $T_{h}: \mathbb{R}^{3} \to \mathbb{R}^{2}$ $g \mapsto A g$

where $g : \begin{pmatrix} A \circ \\ 2 - A \end{pmatrix} \in h_{3 \times 2}(\mathbb{R})$ and $A : \begin{pmatrix} A \circ A \\ -2 \cdot 5 - A \end{pmatrix} \in h_{2 \times 3}(\mathbb{R})$

$$f : \mathbb{R}^{3} \to \mathbb{R}^{3}$$

$$T_{A} \left(T_{B}\left[\vec{x}\right]\right) = \begin{pmatrix} A & 0 & 1 \\ -2 & 5 & -4 \end{pmatrix} \begin{pmatrix} 2x_{A} & x_{Z} \\ 2x_{A} & x_{Z} \end{pmatrix} = \begin{pmatrix} x_{A} + 3x_{A} + x_{Z} \\ -2x_{A} + 5(2x_{A} - x_{Z}) - 6x_{A} + x_{Z} \end{pmatrix}$$

$$= \begin{pmatrix} 4x_{A} + x_{Z} \\ 5x_{A} - 6x_{Z} \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 5 - 6 \end{pmatrix} \begin{pmatrix} x_{A} \\ x_{Z} \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 0 & 1 \\ -2 & 5 & -4 \end{pmatrix} \begin{pmatrix} x_{A} \\ -2 &$$

Définition 25 (Produit matriciel).

Soient $A \in M_{m \times n}(\mathbb{R})$ et $B \in M_{n \times p}(\mathbb{R})$ deux matrices. Alors le produit AB est défini par

au nombre de lignes de B.

Règle ligne-colonne

Exemple

Si $A \in M_{m \times n}(\mathbb{R})$ et $B \in M_{n \times p}(\mathbb{R})$ sont des matrices, alors leur produit

C = AB est donné par $C = (c_{ij})$ où

Test donné par
$$C = (c_{ij})$$
 où
$$A b_{ij}$$

$$= \underbrace{a_{i4} a_{i3} \cdots a_{in}}_{bnj} + \underbrace{a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_{ej} + \cdots + a_{in} b_{nj}}_{cij}$$

$$= \underbrace{a_{i4} b_{ij} + a_{i2} b_$$

Exemple
$$\begin{pmatrix}
2 & 0 \\
\hline
A & -A
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 \\
\hline
A & 2 & 1 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
4 & 2 \\
3 & 0 \\
-2 & 2
\end{pmatrix}$$

$$= \begin{pmatrix}
4 & 2 \\
3 & 0 \\
-2 & 2
\end{pmatrix}$$

$$C_{44} = \sum_{k=4}^{2} Q_{4k} b_{k4} = Q_{44} b_{44} + Q_{42} b_{24} = 2 \cdot 2 + 0 \cdot (-1) = 4$$

$$C_{32} = \sum_{k=4}^{2} Q_{3k} b_{k2} = Q_{34} b_{42} + Q_{32} b_{22} = 2$$

Théorème 14. Soient $A \in M_{m \times n}(\mathbb{R})$ une matrice et B et C des matrices telles que les expressions ci-dessous soient définies. On a

1.
$$A(BC) = (AB)C$$

2.
$$A(B+C) = AB + AC$$
 (distrebutive)

$$3. (A+B)C = AC + BC \qquad ($$

4.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$
 pour tout $\lambda \in \mathbb{R}$

5.
$$A = AI_{n \times n} = I_{m \times m}A$$

la matrice identifé est l'él. neutre pour la muet.

Illustration

1. Composée de 3 applications:

R

BE Mnxp (R)

TC

CE

BORN

ABCE Mnxq (R)

ABCE

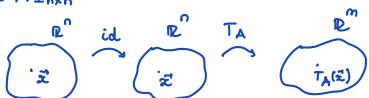
ABCE

ACM Mxq (R)

ACM Mnxq (R)

$$T_{ABC}(\vec{x}) = A(B(C\vec{x}))) \in \mathbb{R}^{m}$$
 $C \in \mathbb{R}^{n}$
 $C \in \mathbb{R}^{n}$
 $C \in \mathbb{R}^{n}$

5. A = AT_{0×0}



Inx est la matrice canoniquement associée à l'application identifé (id) dans P.

$$A = I_{m \times m} A$$

$$\mathbb{R}^{n}$$

$$\vec{\tau}_{A}$$

$$\vec{\tau}_{A}(\vec{x})$$

$$\vec{\tau}_{A}(\vec{x})$$

Imam est la matrice can associée à l'identité dans IRM.

Au niveau de la composition d'applications, on a

Remarques importantes concernant les propriétés du produit matriciel